Sunday 29 November 2015

The chemical treatment by the UC-B team led to a dramatic 100-fold increase in the material's photoluminescenc

The chemical treatment by the UC-B team led to a dramatic 100-fold increase in the material's photoluminescence quantum yield, a ratio describing the amount of light generated by the material versus the amount of energy put in. 


Transparent, brighter LEDs may become a reality soon

The chemical treatment by the UC-B team led to a dramatic 100-fold increase in the material's photoluminescenc... Read MoreNEW YORK: University of California - Berkeley researchers have discovered a simple way of making monolayer semiconductors -- which are less than a nanometre thick -- more efficient and defect free.

The finding opens the door to the practical application of monolayer materials, such as MoS2, in devices like LEDs and high-performance transistors.

"One could develop high-performance LED displays that are transparent when powered off and flexible using the 'perfect' optoelectronic monolayers produced in this study," the researchers said.

Monolayer semiconductors have generated a great deal of buzz as they hold promise in the development of transparent LED displays, ultra-high efficiency solar cells, photo detectors and nanoscale transistors. But the films are notoriously riddled with defects, killing their performance.

The UC-Berkeley team found a simple way to fix these defects through the use of an organic superacid.

The chemical treatment led to a dramatic 100-fold increase in the material's photoluminescence quantum yield, a ratio describing the amount of light generated by the material versus the amount of energy put in.

The greater the emission of light, the higher the quantum yield and the better the material quality.

No comments:

Post a Comment